Rabu, 21 Januari 2009

PENDEKATAN PROBLEM SOLVING MATEMATIKA PADA KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP)

Oleh : Lalu Muhammad Fauzi

Pada hakekatnya pendidikan dalam kontek pembangunan nasional mempunyaio fingsi (1) pemersatu bangsa, (2) penyamaan kesempatan dan, (3) pengembangan potensi diri. Standar nasional pendidikan memuat criteria minimaltentang komponen pendidikan yang memungkunkan setiap jenjang dan jalur pendidikan untuk mengembangkan pendidikan secar optimal sesuai denga karakteristik dan kehasan programnya. Demikian juga untuk jalur pendidikan non formalyang memiliki karakteristik tidak tersetruktur untuk mengembangkan programnya sesuai dengan kebutuhan masyarakat.
Peningkatan relevansi pendidikan dimaksudkan untuk menghasilkan lulusan yang sesuai dengan tuntutan kebutuhan berbasis potensi sumber daya alam Indonesia. Peningkatan efisiensi manajemen pendidikan dilakukan melalui penerapan manajemen berbasis sekolah dan pembaharuan pengelolaan pendidikan secara terencana, terarah, dan berkesinambungan.
Istilah kurikulum memiliki berbgai tafsiran yang dirum,uskan oleh pakar-pakar dalam bidang ppengembangan kurikulum sejak dulu sampai dengan sekarang ini. Dari serangkaian tafsiran para pakar-pakar ini memberikan arti kurikulum sebagai:
1. Kurikulum memuat isi dan materi pelajaran
Kurikulum ialah sejumlah mata ajaran yang harus ditempuh dan dipelajari oleh siswa untuk memperoleh sejumlah pengetahuan.
2. Kurikulum sebagai rencama pembelajaran.
Suatu program pendidikan yang disediakan untuk membelajarkan siswa. Dengan program ini siswa melakukan berbagai kegiatan belajarbelajar, sehingga terjadi perubahan dan perkembangan tingkah laku siswa sesuai dengan tujuan pendidikan dan pembelajaran.
3. Kurikulum sebagai pengalaman belajar
Coba kita lihat salah satu bagian dari tujuan umum pada SK dan KD yaitu:
Mata pelajaran matematika bertujuan agar peserta didik memiliki kemampuan sebagai berikut.
1. Memahami konsep matematika, menjelaskan keterkaitan antarkonsep dan mengaplikasikan konsep atau algoritma, secara luwes, akurat, efisien, dan tepat, dalam pemecahan masalah
2. Menggunakan penalaran pada pola dan sifat, melakukan manipulasi matematika dalam membuat generalisasi, menyusun bukti, atau menjelaskan gagasan dan pernyataan matematika
3. Memecahkan masalah yang meliputi kemampuan memahami masalah, merancang model matematika, menyelesaikan model dan menafsirkan solusi yang diperoleh
4. Mengomunikasikan gagasan dengan simbol, tabel, diagram, atau media lain untuk memperjelas keadaan atau masalah
5. Memiliki sikap menghargai kegunaan matematika dalam kehidupan, yaitu memiliki rasa ingin tahu, perhatian, dan minat dalam mempelajari matematika, serta sikap ulet dan percaya diri dalam pemecahan masalah.
Dilihat dari Kurikulum Tingkat Satuan Pendidikan (KTSP) bahwa pada seluruh komponen baik pada SI, SK dan KD serta pada SKL telah dijabarkan dengan jelas bahwa pendekatan yang digunakan pada matematika adalah pemecahan masalah (problem solving). Tapi perlu kita tahu apa itu pendekatan pemecahan masalah dalam matematika.
Pemecahan masalah merupakan bagian dari kurikulum matematika yang sangat penting karena dalam proses pembelajaran maupun penyelesaian, siswa dimungkinkan memperoleh pengalaman menggunakan kemampuan dan keterampilan yang sudah dimiliki untuk diterapkan dalam pemecahan masalah yang bersifat tidak rutin. Melalui kegiatan ini aspek-aspek kemampuan matematika penting seperti penerapan aturan pada maslah tidak rutin, penemuan pola, penggeneralisasian, komunikasi matematika dan lain-lain dapat dikembangkan secara lebih baik. Namun demikian, kenyataan dilapangan menunjukan bahwa kegiatan pemecahan masalah dalam pembelajaran matematika belum dijadikan sebagai kegiatan utama. Padahal di Negara-negara maju seperti Amerika Serikat dan jepang kegiatan tersebut dapat dikatakan merupakan inti dari dari kegiatan pembelajaran matematika sekolah. Selain itu, Suryadi dkk (1999) dalam survey tentang “Curerent situation on mathematics and science education in Bandung” yang diseponsori oleh JICA, antara lain menemukan bahwa pemecahan masalah matematika merupakan salah satu kegiatan matemtika yang dianggap penting baik oleh para guru maupun siswa di semua tingkatan sekolah dasar dan menengah. Tapi hal tersebut menjadi sebuah persoalan yang sulit dalam matematika baik bagi siswa dalam mempelajarinya maupun bagi guru dalam mengajarkannya. Yang menjadi pertanyaan mengapa terjadi demikian? Jawabanya adalah karena para guru masih belum mau melepaskan metodee drill, atau mungkin belum dipahaminya tentang pendekatan pemecahan masalah dalam matematika atau mungkin para guru iongin mengambil gampangnya saja.
Sebagaiman tercantum dalam Kurikulum Matematika sekolah bahwa tujuan diberikannya matematika antara lain agar siswa mampu menghadapi perubahan keadaan di dunia yang selalau berkenbang, melalui latihan bertindak atas dasar pemikiran secara logis, rasional, kritis, cermat, jujur, dan efektif. Hal ini jelas merupakan tuntunan sangat tinggi yang tidak mungkin bias disapai hanya melalui hafalan, latihan penyelesaian soal yang bersifat rutin, serta proses pembelajaran biasa.
Disadari atau tidak setiap hari kita harus menyelesaikan berbagai masalah. Dalam penyelesaian suatu masalah, kita sering kali dihadapkan pada suatu hal yang pelik dan kadang-kadang pemecahannya tidak dapat diperoleh dengansegera. Tidak bias dipungkiri masalah yang biasa dihadapai sehari-hari itu tidak selamanya bersifat matematis. Dengan dedmikian tugas utama guru adalah untuk membantu siswa menyelesaikan berbagai masalah dengan spectrum yang luas yakni membantu mereka untuk dapat memahami makna kata-kata atau istilah yang muncul dalam suatu masalah sehingga kemampuannya dalam memahami konteks madalah bias terus berkembang, menggunakan kemampuan inkuiri dalam sain, menganalisa alas an mengapa suatu masalah itu muncul dalam studi social, dan lain-lain. Dalam Matematika, hal tersebut bisa berupa pemecahan masalah matematika yang didalamnya termasuk soal ceritera.
Guru menghadapi kesulitan dalam mengerjakan bagaimana cara menyelesaiakan masalah dengan baik, dilain fihak siswa menghadapi kesulitan bagaimana menyelesaikan madalah yang dibnerikan guru. Berbagai kesulitan ini muncul antara lain karena mencari jawaban dipandang sebagai satu-satunya tujuan yang ingin dicapai. Karena hanya berfokus padda jawaban, anak seringkali salah dalam memilih teknik penyelesaian yang sesuai.
Suatu masalah biasanya memuat suatu situasi yang mendorong seseorang menyelesaikannya akan tetapi tidak tahu secara langsung apa yang harus dikerjakan untuk menyelesaikannya. Juka suatu masalah diberikan kepada seorang anak dan anak itu langsung mengetahu secara sara penyelesaiannya dengan benar maka soal tersebut tidak dapat dikatakan sebagai maslah.
Berbisara tentang pemecahan masalah tidak bisa lepas dari tokoh utamanya yaitu G. Polya. Menurut Polya, dalam pemecahan suatu masalah terdapat empat langkah yang harus dilakaukan yaitu: (1) memahami masalah, (2) merencanakan pemecahannya, (3) menyelesaikan masalah sesuai dengan rencana dan (4) memeriksa kembali hasil yang diperoleh.
Empat tahap pemecahan malsalah dari Polya tersebut merupakan satu kesatuan yang sangat penting untuk dikembangkan. Salah satu cara mengembangkan kemampuan anak dalam memecahkan maslah adalah melalui mpenyedian pengalaman pemecahan masalah yang memerlukan strategi yang berbeda-beda dari satu masalah ke maslah lain.

Daftar pustaka
Suherman, H. Erman dkk, (2003), Strategi Pembelajaran Matematika Kontemporer, UPI, Bandung.
Hamalik, Umar. (2007), Kurikulm dan Pembelajaran, Bumi aksara.
______, (2007) Panduan Penyususnan KTSP Lengkap,Pustaka Yustitia, Yogyakarta.
Berikutnya

Minggu, 04 Januari 2009

PANDANGAN TENTANG MATEMATIKA SEKOLAH

Oleh Lalu Muhammad Fauzi

Banyak guru mulai menggunakan apa yang disebut “pendekatan standar ”Pembelajaran yang lebih kooperatif, loebih menekankan pada konsep dan pemecahan soal dan toleransi yang luas terhadap penggunaan kalkulator.Perubahan-perubahan ini sering tidak mendasar dan tidak benar-benar mengubah sifat apa yang siswa kerjakan dan bagaiman mereka berfikir di dalam pelajaran matematika.

Kebanyak orang berfikir bahwa matematika adalah sebuah mata pelajaran yang penting tetapi hanya sebagian yang memahami apa sebenarnya matematika itu. Untuk kebanyakan orang, mengataklan bahwa matematika adalah kumpulan aturan yang harus dimengerti, perhitungan-perhitungan aritmetika, persamaan aljabar yang abstrak dan bukti-bukti geometris dan lain sebagainya. Pandangan ini sangat berbeda dengan pandangan terhadap matematika yang memberti arti objek-objek matematika seperti data, bentuk perubahan atau pola.

Sampai saat ini belum ada kesepakatan yang bulat diantara matematikawan, apa yang disebut matematika. Sasaran penalaran matematika tidak konkrit melainkan abstrak. Dengan mengetahui sasaran matematika kita dapat mengetahui hakekat matematika yang sekali gus dapat kita ketahui juga cara berfikir matematika itu.(Herman Hudodo,1988;2)

Kalau kita telaah bahwa matematika tidak hanya berhubungan dengan bilangan-bilangan serta operasi-operasinya melainkan, juga unsure ruang sebagai sasarannya. Bagaimana pandangan ini bisa menjadi lazim di masyarakat kita?. Jawaban terbaik dapat ditemukan dalam pendekatan yang digunakan guru dalam mengajar matematika. Memang pengajaran tradisional masih merupakan pola pengajaran utama, karena tuntutan dan tanggungan yang cukup berat bagi guru, Yang biasanya diawali dengan penjelasan tentang ide-ide yang terdapat dalam halaman buku yang dipelajari, kemudian diikuti dengan menunjukan kepada siswa bagaiman mengerjakan latihan soal. Bahkan ketika siswa berkegiatan, guru masih menuntun siswa bagaimana menggunakan materi yang dipelajari untuk menjawab soal.

Kalau dilihat dari tuntuan KTSP tentang pembelajaran matematika maka cara tersebut diatas jauh dari tujuan yang diharapkan.Coba kita lihat dari standar isi dan standar kompetensi dan kompetensi dasar di situ jelas jelah pada setiap langakh dijelaskan bahwa matematika menggunakan metode pemecahan masalah dengan tujuan untuk meningkatkan daya fikir siswa yang kreatif. Akan tetapi kembali lagi kepada persoalan tuntutan tadi.

Matamtika adalah ilmu tentang pola dan urutan (Jhon A. Van De walle, 2006, 13) Difinisi ini menantang pandangan masyarakat terhadap matematika sebagai ilmu yang didominasi oleh perhitungan. Ilmu pengetahuan merupakan proses penggambaran sesuatu atau memberi arti tentang sesuatu. Memang ilmu pengtahuan berawal dari soal tetapi pada suatu situasi. Meskipun mungkin kita tidak pernah memikirkannya, matematika adalah ilmu tentang sesuatu yang meilki pola keteraturan dan urutan yang logis. Menemukan dan mengungkapkan keteraturan atau urutan ini dan kemudian memberikan arti merupakan makna dari mengerjakan matematika.

Sebagai contoh, pernahkah kita sebagi seorang guru memikirkan bahwa 6 + 7 sama dengan 5 + 8 dan 4 + 9? Bagaimana polanya?, Bagaiman hubungannya? atau contoh lain jika dua bilangan ganjil dikalikan dengan bilangan ganjil maka hasilnya adalah bilangan ganjil, tetapi jika dua bilangan ganjil di jumlahkan atau dikurangkan hasilnya adalah bilangan genab.

Adapun perinsip dan standar matematika sekolah dirancang untuk meberikan petunjuk dan arahan bagi para guru dan pihak-pihak lain yang terkait dengan pembelajaran matematika. Salah satu ciri yang paling penting dari prinsip-prinsip dan standar matematika sekolah adalah adanya enam perinsip dasar untuk mencapai pendidikan matematika yang berkualitas tinggi yaitu:

1. Prinsip Kesetaraaan
Pran yang kuat dari prinsip kesetaraan adalah harapan yang tinggi utnuk semua siswa. Semua siswa harus mempunyai kesempatan dan dukungan yang cukup untuk belajar matematika “tampa memandang karakteristik persoalan, latar belakang atau hambatan fisik”.

2. Prinsip Kurikulum
Koheren berkaitan dengan pentingnya membangun atau mengembangkan pengajaran seputar ide-ide baik didalam kurikulum maupun pengajaran didam kelas. Para siswa harus dibantu untuk melihat bahwa matematika merupakan sesuatu yang utuh dan terjalin. Bukan kumpulan bagian-bagian yang terlepas.
Ide-ide matematika itu penting jika ide-ide itu berguna bagi pengembangan yang lain, menghubungkan ide yang satu dengan yang lainya, atau membantu mengilustrasikan mata pelajaran matematika sebagai usaha manusia.

3. Prinsip Pengajaran
Apa yang siswa pelajari hampir seluruhnya tergantung pada pengalaman guru mengajar di dalam kelas setiap hari. Untuk mencapai pendidikan yang berkualitas para guru harus (1) memahami secara mendalam matematika yang mereka ajarkan (2)memahami bagaimana siswa belajar matematika, tyermasuk didalamnya mengetahui perkembangan matematika siswa secara individu, dan (3) memilih tugas-tugas dan strategi yang akan meningkatkan mutu proses pengajaran. Tugas para giuru adalah mendorong siswanya untuk berfikir, bertanya, menyelesaikan soal, dan mendiskusikan ide-ide juga strategi

4. Prinsip Pembelajaran
Prinsip ini didasari pada dua ide dasar . yang pertama, belajar matematika dengan pemahaman, adalah penting. Belajar matematika tidak hanya memerlukan keterampilan menghitung tetapi juga memerlukan kecakapan untuk berfikir. Yang kedua prinsip-prinsip ini dengan sangat jelas menyetakan bahwa siswa dapat belajar matematika dengan pemahaman. Belajar ditingkatkan dalam kelas dengan cara para siswa diminta utuk menuilai ide-ide mereka atau ide-ide temanya, di dorong untuk membuat dugaan tentang matematika lalu mengujinya dan mengembangkan keterampilan memberi alasan yang logis.

5. Prinsip Penilaian
Penilaian harus tidak semata-mata untuk menilai siswa, akan tetapi lebih pada menilai diri sendiri sebagai guru dan harus dimanfaatkan juga untuk siswa yakni untuk menggairahkan untuk meningkatkan belajarnya.Penilaian yang melibatkan pengamatan yang terus menerus dan interaksi siswa, akan mendorong siswa untuk menyampaikan dan menjelaskan gagasan dengan lancer. Umpan balik dari penilaian harian akan membantu siswa mencapai tujuannya dan menjadikan mereka tidak selalu bergantung kepada orang lain.

6. Prinsip Tehnologi
Kalkulator dan computer harus dilihat sebagai alat yang penting dalam belajar dan mengerjakan matematika di kelas. Tehnologi memungkinkan siswa untuk memfokuskan diri pada ide-ide matematika, pemahaman, dan menyelesaikan soal, yang tidak mungkin dikerjakan tampa bantuan kalkulator atau computer. Tehnologi meningkatkan proses belajar matematika karena memungkinkan eksplorasi yang lebih luas dan memperbaiki penyajian ide-ide matematika. Dengan tehnologi lebih banyak soal dapat dipecahkan. Dengan tehnologi juga memungkinkan siswa tertentu untuk mengesampingkan bagian yang kurang penting sehingga waktunya dapat dipakai memahami bagian matematika yang penting.

Daftar pustaka
Walle, Jhon A. Van de. Matamtika sekolah dasar dan Menegah, Jakarta, Erlangga, 2006Hudodo, Herman. Mengajar Belajar Matematika, Debdikbud, 1988
Berikutnya